Binding of an RNA aptamer and a partial peptide of a prion protein: crucial importance of water entropy in molecular recognition

نویسندگان

  • Tomohiko Hayashi
  • Hiraku Oshima
  • Tsukasa Mashima
  • Takashi Nagata
  • Masato Katahira
  • Masahiro Kinoshita
چکیده

It is a central issue to elucidate the new type of molecular recognition accompanied by a global structural change of a molecule upon binding to its targets. Here we investigate the driving force for the binding of R12 (a ribonucleic acid aptamer) and P16 (a partial peptide of a prion protein) during which P16 exhibits the global structural change. We calculate changes in thermodynamic quantities upon the R12-P16 binding using a statistical-mechanical approach combined with molecular models for water which is currently best suited to studies on hydration of biomolecules. The binding is driven by a water-entropy gain originating primarily from an increase in the total volume available to the translational displacement of water molecules in the system. The energy decrease due to the gain of R12-P16 attractive (van der Waals and electrostatic) interactions is almost canceled out by the energy increase related to the loss of R12-water and P16-water attractive interactions. We can explain the general experimental result that stacking of flat moieties, hydrogen bonding and molecular-shape and electrostatic complementarities are frequently observed in the complexes. It is argued that the water-entropy gain is largely influenced by the geometric characteristics (overall shapes, sizes and detailed polyatomic structures) of the biomolecules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Aptamer-Binding Sites in Hepatitis C Virus Envelope Glycoprotein E2

Hepatitis C Virus (HCV) encodes two envelope glycoproteins, E1 and E2. Our previous work selected a specific aptamer ZE2, which could bind to E2 with high affinity, with a great potential for developing new molecular probes as an early diagnostic reagents or therapeutic drugs targeting HCV. In this study, the binding sites between E2 and aptamer ZE2 were further explored. E2 was truncated to 15...

متن کامل

Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation

There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...

متن کامل

Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway

Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...

متن کامل

A Study on The Effect of Temperature on Human Prion Protein Structure through Molecular Dynamic Simulation

Background & Aims: The normal form of the prion protein is called PrPC and its infectious form is called PrPSc. This protein functions like a crystallized core for the transformation of PrPc into an abnormal PrPSc. The aim of the present study was to investigate the effect of temperature on human prion protein structure through molecular dynamic simulation. Methods: In this research, the GROMAC...

متن کامل

Mechanistic prospective for human PrPC conversion to PrPSc: Molecular dynamic insights

PrPC conversion to PrPSc isoform is the main known cause for prion diseases including Crutzfeldt-Jakob, Gerstmann-Sträussler-Sheinker syndrome and fatal familial insomnia in human. The precise mechanism underling this conversion is yet to be well understood. In the present work,  using the coordinate file of PrPC (available on the Protein Data Bank) as a starting structure, separate molecular d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014